K4 S 1,35 T

w2 (ORISR (Scopus) SR
COAL GEOLOGY & EXPLORATION

RHERERERRAT BARKAEERR
MR FEE ®H EEE sg Em O "-F FM
FIHIASL:

MRz, ZHERE, 25, % IRTPERE REAAEY R S I IZR]. 4 T T 5 8%, 2024, 52(12): 84-94.
CHEN Hao, LI Guozhang, QIN Yong, et al. Commingling production of deep coal-measure gas through hydraulic fracturing:

Propagation patterns of induced fractures and their determinants[J]. Coal Geology & Exploration, 2024, 52(12): 84-94.

TELR B View online: https:/dx.doi.org/10.12363/issn.1001-1986.24.09.0566

LT ARG I H A SO B

Articles you may be interested in

JEBRRHIE XM DU 7K ) e R AR i B BRI 5T
Numerical simulations of the effects of bedding planes on hydraulic fracture propagation law in oil shale

I8 M B S5 R, 2023, 51(11): 44-54  hitps://doi.org/10.12363/issn.1001-1986.23.07.0397
IR AR SR AL 2 2 A A AR B AR AL

Numerical simulation of layer—crossing propagation behavior of hydraulic fractures at coal-rock interface

4L FH i 55 B9 2020, 48(2): 106-113  hittps://doi.org/10.3969/j.issn.1001-1986.2020.02.017
W 2B A K ) Y FRAFIEDT Y

Propagation of hydraulic fractures in thin interbedded tight sandstones
R S IEE. 2023, 51(7): 61-71  hitps://doi.org/10.12363/issn.1001-1986.22.10.0788

WA 2 K ) s S8R N ST R B A Pl DN 3R SR 9

An experimental study on factors controlling the proppant transport in hydraulic fractures of coal reservoirs

L FE M T S D, 2023, 51(6): 62-73  hittps://doi.org/10.12363/issn.1001-1986.23.02.0091
Ho i3 2 R RO A R S B B At

Exploring the principle and method for commingled production of coal-measure gas through layered pressure relief in surface wells

4L FH i 55 395 2024, 52(2): 171-179  hitps://doi.org/10.12363/issn.1001-1986.23.10.0701
WEFRIKOV I E I LR 24 Y L]

Fracture propagation mechanism in directional perforation and hydraulic fracturing of coal seam horizontal wells

L FH M 5 S5 3K, 2024, 52(4): 6875 hitps://doi.org/10.12363/issn.1001-1986.23.08.0496


www.mtdzykt.com
www.mtdzykt.com
https://dx.doi.org/10.12363/issn.1001-1986.24.09.0566
https://dx.doi.org/10.12363/issn.1001-1986.23.07.0397
https://doi.org/10.12363/issn.1001-1986.23.07.0397
https://dx.doi.org/10.3969/j.issn.1001-1986.2020.02.017
https://doi.org/10.3969/j.issn.1001-1986.2020.02.017
https://dx.doi.org/10.12363/issn.1001-1986.22.10.0788
https://doi.org/10.12363/issn.1001-1986.22.10.0788
https://dx.doi.org/10.12363/issn.1001-1986.23.02.0091
https://doi.org/10.12363/issn.1001-1986.23.02.0091
https://dx.doi.org/10.12363/issn.1001-1986.23.10.0701
https://doi.org/10.12363/issn.1001-1986.23.10.0701
https://dx.doi.org/10.12363/issn.1001-1986.23.08.0496
https://doi.org/10.12363/issn.1001-1986.23.08.0496

®50k F 128 BHE MRS #E Vol. 52 No.12
2024 4 12 A COAL GEOLOGY & EXPLORATION Dec. 2024

MR, 2R, 258, 45, IR R A RIR ALY R A R L P R[], B R 5 4R, 2024, 52(12): 84-94. doi:
10.12363/issn.1001-1986.24.09.0566
CHEN Hao, LI Guozhang, QIN Yong, et al. Commingling production of deep coal-measure gas through hydraulic fracturing:
Propagation patterns of induced fractures and their determinants[J]. Coal Geology & Exploration, 2024, 52(12): 84-94. doi:
10.12363/issn.1001-1986.24.09.0566

REPR RS ERERAEY RARLEFERE

MR, FE®Y, & F, 2zR', v &, aA, x-F', & !
(1. FlEASF W TASR, HiF BT 810016; 2. FEF W A¥ HEL KA FFKR,
L RN 2211165 3. FEHE ST —O L BRI, Fi# BT 810007)

HBE: (B ] BRAASRARZIBZBEFTHARRALLEF TN TEFEA TR, R, HERAHE
HRARBARE ., WEBEREFEX, FEELAASCAMELER IR FHBEAERRAMLENGY
Jer XA K BARBEAERR N, do T BT % 44 BB £ % AR THRAREE &2 S 2R A
BREFREXTE, [FE]URREIMBUANZIE LR AG, AP0l i AL ESERY
HRGFRZE, TERZ, ARBEED T &, ARARREERNELZLEQT EAE, 365
ERER RSN, [ER])ERAN, #BERIRKRFEIRANE, RERBREZEZ, RIEHEME
a3 RO TS Ay, RHEMK, 28T ERAME, ZEORIRTFEE AFfe
JESLR FE B £ Bl BoP R E, BAREIA, B BT RN RTE 28 AR KRR SR 6 55
Ao, BT EA, fETR BRI E Al tb 209 T AT BAR B AR M), 2 i A
TEWMKARVHE LT RN, $H %P R EHRGE, [&#] ATEXHR, BETIEHR
R M & Ao Kbk Bk 7 £ RAEERA, B mAk R BAE TS 2R RF £ 85 £ £ 0~4 MPa,
FAIREE KT 4.5 MPa 8948 BHATAREL, FFAKT 4 m’/min 9 R EHFHATFR, AmEIL
F & 2 TR IR
X 8B W AR SABKAEE; MR WRARE, RIAE
RESES: TE321 XEGREE: A XEHS: 1001-1986(2024)12-0084-11
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Abstract: [Objective] The commingling production of coal-measure gas represents a pivotal approach to enhancing the
single-well production of unconventional gas in China. However, coal-measure gas reservoirs exhibit distinctly different
material compositions and physical properties, leading to uncertainty of the propagation modes and developmental de-
grees of fractures in different reservoirs during the hydraulic fracturing of coal-measure gas reservoirs subjected to com-
mingling production. Therefore, effectively coordinating the stimulation of multiple reservoirs for multi-gas comming-
ling production is crucial for minimizing production costs and maximizing production capacity. [Methods] This study
investigated the Linxing block along the northeastern margin of the Ordos Basin as an example to analyze the geologic

and engineering factors influencing the commingled fracturing performance of coal-measure gas reservoirs. Utilizing nu-
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merical simulations, this study explored the propagation modes of fractures in various reservoirs. Accordingly, it pro-
posed suggestions for commingled hydraulic fracturing in the Linxing block. [Results] The results indicate that an in-
crease in the differences in the minimum horizontal in-situ stress and tensile strength between reservoirs and carriers, as
well as an increase in the injection rates and viscosities of fracturing fluids, contributed to increased fracture heights and
widths. Higher values of these parameters corresponded to enhanced fractures' capacity to penetrate strata. The minim-
um horizontal in-situ stress of strata and the viscosity of fracturing fluids primarily influenced the fracture widths of
reservoirs. Specifically, a higher relative minimum horizontal in-situ stress of strata or a lower viscosity of fracturing flu-
ids resulted in narrower fractures. Additionally, changes in the differences in modulus of elasticity and Poisson's ratio
between reservoirs and barriers produced minimal impacts on the overall fracturing performance. Nevertheless, an in-
crease in the difference in modulus of elasticity reduced the time for fractures to penetrate strata, enabling them to reach
their ultimate heights more rapidly. [Conclusions] Based on the above results, this study proposes a scheme for select-
ing the optimal reservoirs and production recommendations for commingling production of coal-measure gas reservoirs
in the Linxing block. Specifically, commingled fracturing should be preferentially conducted for reservoirs with the min-
imum horizontal in-situ stress differences of -4 MPa and tensile strength differences exceeding 4.5 MPa between reser-
voirs and barriers. Furthermore, it is recommended that the injection rates of fracturing fluids should be greater than 4

3, . . .
m’/min to achieve more efficient resource development.

Keywords: coal-measure gas; commingled hydraulic fracturing; numerical simulation; geological factors; construction
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Fig.1 Tectonic location and composite stratigraphic column of the Linxing block (modified after reference [17])
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Fig.9 Impacts of modulus of elasticity and Poisson's ratio on fracture height and length
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Fig.10 Impacts of different engineering parameters on the geomet-
rical morphology of fractures
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