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深部煤系气合采压裂裂缝扩展规律及其主控因素
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摘要:  【目的】煤系气合采是提高我国非常规天然气单井产量的重要开发方式。然而，煤系气储层

物质组成截然不同、物理性质差异巨大，导致煤系气合采储层在压裂过程中裂缝在不同储层内的扩

展方式和发育程度存在不确定性。如何协调好多储层改造实现多气共采对于降低煤系气开发成本、

提高产能至关重要。【方法】以鄂尔多斯盆地东北缘临兴区块为例，剖析影响煤系气储层合层压裂

效果的地质因素、工程因素，利用数值模拟方法，研究不同储层内压裂裂缝的扩展规律，并对合层

压裂提出针对性建议。【结果】结果表明，储隔层最小水平主应力差、抗拉强度差、泵注排量和黏

度的增大有利于缝高和缝宽的扩展，其数值越大，裂缝的穿层能力越强。岩层的最小水平主应力和

压裂液黏度主要影响储层中裂缝宽度，具体表现为，岩层相对最小水平主应力越大或压裂液的黏度

越小，裂缝宽度越小。储隔层弹性模量差和泊松比差的变化对整体压裂效果的影响较小，但弹性模

量差增大会减少裂缝穿层时间，使裂缝更快到达极限高度。【结论】基于上述研究，提出了临兴地

区煤系气合采储层优选方案及排采建议，即应优先选取储隔层最小水平主应力差在 0~4 MPa、

抗拉强度差大于 4.5 MPa 的储层进行合采压裂，并以大于 4 m3/min 的泵注排量进行开采，从而实现

更高效的资源开发。

关　键　词：煤系气；合层水力压裂；数值模拟；地质因素；施工因素

中图分类号：TE321        文献标志码：A        文章编号：1001-1986(2024)12-0084-11

Commingling production of deep coal-measure gas through hydraulic fracturing: Propagation
patterns of induced fractures and their determinants
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(1. School of Geological Engineering, Qinghai University, Xining 810016, China; 2. School of Mechatronic Engineering,
China University of Mining and Technology, Xuzhou 221116, China; 3. Qinghai No.105 Coal Geological

Exploration Team, Xining 810007, China)

Abstract: [Objective] The commingling production of coal-measure gas represents a pivotal approach to enhancing the
single-well production of unconventional gas in China. However, coal-measure gas reservoirs exhibit distinctly different
material compositions and physical properties,  leading to uncertainty of the propagation modes and developmental de-
grees of fractures in different reservoirs during the hydraulic fracturing of coal-measure gas reservoirs subjected to com-
mingling production. Therefore, effectively coordinating the stimulation of multiple reservoirs for multi-gas comming-
ling production is crucial  for minimizing production costs and maximizing production capacity. [Methods] This study
investigated the Linxing block along the northeastern margin of the Ordos Basin as an example to analyze the geologic
and engineering factors influencing the commingled fracturing performance of coal-measure gas reservoirs. Utilizing nu-
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merical simulations,  this  study explored the  propagation modes  of  fractures  in  various  reservoirs.  Accordingly,  it  pro-
posed suggestions for commingled hydraulic fracturing in the Linxing block. [Results] The results indicate that an in-
crease in the differences in the minimum horizontal in-situ stress and tensile strength between reservoirs and carriers, as
well as an increase in the injection rates and viscosities of fracturing fluids, contributed to increased fracture heights and
widths. Higher values of these parameters corresponded to enhanced fractures' capacity to penetrate strata. The minim-
um  horizontal  in-situ  stress  of  strata  and  the  viscosity  of  fracturing  fluids  primarily  influenced  the  fracture  widths  of
reservoirs. Specifically, a higher relative minimum horizontal in-situ stress of strata or a lower viscosity of fracturing flu-
ids resulted in narrower fractures.  Additionally,  changes in the differences in modulus of  elasticity and Poisson's  ratio
between reservoirs  and barriers  produced minimal  impacts  on the  overall  fracturing performance.  Nevertheless,  an  in-
crease in the difference in modulus of elasticity reduced the time for fractures to penetrate strata, enabling them to reach
their ultimate heights more rapidly. [Conclusions] Based on the above results, this study proposes a scheme for select-
ing the optimal reservoirs and production recommendations for commingling production of coal-measure gas reservoirs
in the Linxing block. Specifically, commingled fracturing should be preferentially conducted for reservoirs with the min-
imum horizontal in-situ stress differences of 0‒4 MPa and tensile strength differences exceeding 4.5 MPa between reser-
voirs and barriers. Furthermore, it  is recommended that the injection rates of fracturing fluids should be greater than 4
m3/min to achieve more efficient resource development.

Keywords: coal-measure gas; commingled hydraulic fracturing; numerical simulation; geological factors; construction
factors

 

含煤岩系中的煤层气、致密气及页岩气是近年来

我国非常规天然气勘探开发的重点，并已成为天然气的

重要组成部分。中石油第四次非常规天然气资源评价

结果显示：我国煤层气、致密气及页岩气资源量分别达

到 29.82 万亿、21.86 万亿、80.21 万亿 m3[1]。对生储盖

互层频繁的煤系气藏而言，开展共探共采是提高单井效

益的有效途径。“十三五”期间，在鄂尔多斯盆地临兴

区块开展了煤系气合采的先导工程试验[2-4]，多数煤系

气合采井单井最高日产气量达 4 万 m3，平均日产气量

超过 6 000 m3，其中煤层气产气贡献率达到 57%[5]。合

采成功的井最大特点是产层邻近，且采用了体积压裂技

术。业内普遍认为多储层合采除考虑裂缝与储层内油

气资源的接触面积以及裂缝的导流能力外，还需注意储

层的“多”穿层性，即水力压裂过程中裂缝垂向延伸范

围。裂缝高度在一定程度上决定压裂作业的成败，是压

裂设计中的关键因素之一[6]。

研究表明，煤系气储层中裂缝扩展受地层结构的强

烈控制，形态复杂，且层间性质差异、地应力条件及压

裂液类型均对裂缝扩展有重要影响[7-9]。特别是压裂液

滤失量、地应力差、弹性模量差等因素显著影响裂缝的

垂向延伸[10]，且各因素差异越大，裂缝垂向扩展则更加

充分，呈现非对称延伸特征[11]。然而，也有研究指出，

层间弹性模量、泊松比差异对缝高和缝长的延伸没有

明显影响[12]。这与以往采用弹性模量和泊松比计算脆

性系数来衡量储层可压性的认识存在矛盾。此外，裂缝

宽度是影响导流能力的主要参数，但对于合采压裂中不

同储层内缝隙宽度的变化规律尚没有明确的认识。

为此，笔者以鄂尔多斯盆地东北缘临兴区块煤系气

储层为例，建立煤层−致密砂岩及泥岩叠置地质模型，

采用数值模拟方法分析地质因素和工程因素对合层储

层压裂过程中裂缝扩展的影响。并结合实际裂缝监测

数据及前人研究结果，重点探讨弹性模量和泊松比对压

裂过程的影响。在此基础上提出煤系气合采储层优选

方案，以期为煤系气高效合采提供依据。 

1    研究区概况

临兴区块位于鄂尔多斯盆地东北缘。晚古生代以

来，沉积环境发生了由海相−陆相的转变，在该沉积古

地理格局的影响下形成了本溪组−山西组内煤−泥−砂
叠置出现的地层结构。研究区在构造单元上处于晋西

挠褶带中北部[13]。受燕山期岩浆活动影响，区块内形

成了紫金山杂岩体，围绕该岩体，区块内的构造可以进

一步划分为底辟构造隆起带、环形构造带和低幅背斜

带 [14]。同时，受区域地应力影响，区块内发育了以

NE-SW 向为主的小断裂，与紫金山岩体共同构成了该

地区煤系气生成和富集的关键因素(图 1)。
研究区含煤岩系内主要发育 2 套含水层，包括中奥

陶统碳酸盐岩−膏岩岩溶、裂隙承压含水层和太原组碎

屑岩以及灰岩岩溶、裂隙承压含水层[15]。在地层结构、

构造演化及地下水的共同作用下使得该地区煤系气富

集。其中，煤层含气量平均高达 18.1 m3/t[16]。致密气中

有 70% 集中于本溪组、太原组及山西组等层位。各层

段煤层均以半亮煤和半暗煤为主，渗透率介于(0.44~
9.86)×10−3 μm2，平均值为 2.15×10−3 μm2。致密砂岩岩

石类型以岩屑石英砂岩、岩屑长石砂岩以及长石岩屑

砂岩为主，渗透率介于(0.000 5~0.179)×10−3 μm3。煤系
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气储层的复杂性和致密砂岩的低渗透率使得单独开采

致密气或煤层气时，产量均不理想。但对二者进行合压

合采时，平均日产气量可维持在 6 000 m3 以上，显示出

了较好的开发效果。
 

2    三维模型建立
 

2.1    机 理
煤系气储层为多孔隙介质，在模型中通过注液点压

力−位移单元对流固耦合效应进行表征，线性孔隙弹性

方程用于描述应力与应变关系[18]。γi j = λεvδi j+2Gεi j−Cζδi j

p =Cεv−Mζ
(1)

实验中使用牵引分离准则模拟富集元素的损伤起

裂与演化[19]，可表示为：

t =

 tn

ts

tt

 =
 Wnn Wns Wnt

Wns Wss Wst

Wnt Wst Wtt

 =
 εn

εs

εt

 =Wε (2)

并通过 BK 能量准则来模拟裂缝的断裂行为，即：

G
C =GC

n +
(
GC

s −GC
n

) [Gs+Gt

GT

]η
GT =Gn+Gs+Gt

(3)

 

2.2    模型构建

研究区含煤地层埋深介于 1 543~2 133 m，主力煤

层为山西组下段的 4+5 号煤和太原组 8+9 号煤层，其

厚度分别主要分布在 2~8 m 和 4~10 m，平均厚度分别

为 5.8 m 和 6.8 m。除此之外，在山西组和太原组中发

育了多套薄煤层和煤线，成为该区域主要的烃源岩。煤

系内致密砂岩在山西组−本溪组均有分布，其中，太原

组内致密砂岩在厚度及含气性方面均优于其他地层。

不同层位的暗色泥岩层厚度差异较大，山西组泥岩厚度

最大，为 60~100 m；太原组和本溪组泥岩厚度接近，主

要分布在 15~45 m，部分厚度小于 15 m。

根据煤系气储层空间发育和展布特征，结合储层物

性及含气性特点，可将煤系内部生储盖组合划分为下生

上储−自生自储复合型、下生上储−自生自储−上生下储

复合型、下生上储−上生下储复合型[20]。目前研究区成

功进行煤系气合采的产层组合大部分为下生上储−自
生自储型，且 LX-4−10 井、LX-13−16 井、LX-103 井
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中均存在该套产层组合，为此本次以此类型为基础，进

行压裂数值模拟。

模型尺寸为 200 m×30 m×40 m，为 6 层结构，其中

包括煤层 1 层(储层)，单层厚度 2 m；砂岩 3 层(储层)，
单层厚度 10 m；泥岩 2 层(隔层)，单层厚度 4 m，注入点

及初始破坏单元皆位于中部砂岩层中(图 2)。根据多口

井的实验测试和测井反演，确定模型中岩石物性参数及

地应力大小(表 1)。
实验研究地应力差、层间弹性模量差、层间抗拉强

度差、层间泊松比差、压裂液黏度和泵注排量参数对裂

缝穿层扩展的影响。本文所分析的参数及数值见表 2。 

2.3    模型验证

为验证模型的可靠性，将 LX-103 井太原组模拟结

果与实际压裂结果进行对比分析。结果显示，模拟结果

中裂缝高度为 21 m，半缝长为 159 m，实际压裂结果中

裂缝高度为 20 m，半缝长为 160 m，缝高误差为 5%，半

缝长误差为 0.625%，模拟结果总体上与实际压裂结果

相符。
 
 

表 1    储层模拟基本参数
Table 1    Fundamental parameters for reservoir simulation

储层 弹性模量/GPa 泊松比 抗拉强度/MPa 渗透率/10−3μm2 孔隙率/% 最大水平
主应力/MPa

最小水平
主应力/MPa 垂向压力/MPa 初始孔隙

压力/MPa

砂岩 43.00 0.21 8.0 0.54 7.660

52 37 39.5 19煤 5.95 0.39 1.3 2.15 5.140

泥岩 40.00 0.23 6.5 0.19 0.624
 
  

表 2    储层模拟参数
Table 2    Parameters for reservoir simulation

参数 数值

泥岩弹性模量/GPa 34~46

泥岩泊松比 0.17~0.32

泥岩抗拉强度/MPa 3.5~9.5

泥岩最小水平主应力/MPa 33~41

压裂液黏度/(mPa·s) 1~200

泵注排量/(m3·min−1) 1~9
  

3    结果与讨论

通过建立的三维模型，根据不同研究内容，改变相

关地质参数和工程参数，开展数值模拟并进行对比分析。 

3.1    地质参数对裂缝形态的影响 

3.1.1    储隔层最小水平主应力差

Δσ

本次研究中，通过改变泥岩隔层的最小水平主应力

来控制储隔层最小水平主应力差。根据应力测试数据，

各岩层最小水平主应力均设置为 37 MPa，隔层最小水

平主应力分别设置为 33、35、37、39、41 MPa，即最小

水平主应力差 分别为 4、2、0、−2、−4 MPa。
模拟结果显示，不同储隔层最小水平主应力差下

模型的裂缝缝高介于 21.6~25.2  m，缝宽介于 8.55~
9.16 mm(图 3)。当储隔层最小水平主应力差分别为

4、2、0、−2 MPa 时，裂缝均穿过下部泥岩隔层，当改变

泥岩层的最小水平主应力时，裂缝宽度在不同岩层呈现

出不同的变化趋势。裂缝在砂岩层的宽度随着储隔层

最小水平主应力差的增大而减小，在泥岩层的宽度随着

储隔层最小水平主应力差的增大而增大，即该岩层相对

最小水平主应力越大，裂缝的宽度越小。这是因为随着

泥岩层最小水平主应力的增大，裂缝需要积蓄更大的压

力突破泥岩隔层，导致砂岩层中裂缝随着储隔层最小水

平主应力差增大而减小的现象；当裂缝即将穿过泥岩隔

层时，由于最小水平主应力越大的泥岩隔层中压裂液提

供的压力越大，使裂缝可以更快穿透上部砂岩储层，从

而减少了裂缝为穿透砂岩层而在泥岩隔层积蓄压力导

 

缝宽 30 m

注入点

砂岩层 泥岩层 煤层

破坏单元
缝高
40 m

缝长 200 m

图 2    三维模型岩层位置
Fig.2    Locations of rock layers in the 3D model
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图 3    储隔层最小水平主应力差对裂缝垂向几何形态的影响
Fig.3    Impacts of the difference in minimum horizontal in-situ

stress between reservoirs and barriers on the vertical
geometrical morphology of fractures
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致裂缝宽度增加的现象。在压裂液注入总量不变的条

件下，缝长主要与垂向裂缝几何形态的面积有关，这也

解释了当储隔层最小水平主应力差为 4 MPa 时，缝长

增加的变化趋势(图 4)。
当储隔层最小水平主应力差达到−4 MPa 时，裂缝

没有穿透下部泥岩隔层，被限制在上部岩层中，此时，裂

缝有足够大的能量向前扩张，使裂缝缝长急剧增加。由

于地应力不同其所对应的裂缝横向形态也不同(图 5)。
当隔层最小水平主应力较大时，缝长最大位置出现在砂

岩和煤层交界处，即注入点高度附近(图 5a、图 5b)；当
隔层最小水平主应力较小时，缝长最大位置出现在泥岩

隔层位置(图 5c)。
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25.2 m
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191 m 砂岩层

砂岩层

砂岩层
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8.333×10−2

0

刚度下降率

(a)

(b)

(c)

图 5    裂缝横向形态
Fig.5    Transverse morphologies of fractures

 
 

3.1.2    储隔层抗拉强度差

岩层抗拉强度是影响裂缝发育的重要因素，较强的

岩层抗拉强度会阻碍裂缝的扩展。煤、砂岩储层抗拉

强度分别设置为 1.3、8.0 MPa。泥岩隔层抗拉强度分

别设为 3.5、5.0、6.5、8.0、9.0 MPa，在其他参数保持不

变的情况下，对应的储隔层抗拉强度差 ΔRm 分别为

4.5、3.0、1.5、0、−1.5 MPa。
模拟结果显示，不同储隔层抗拉强度差下模型压裂

裂缝的缝高介于 18.6~30.9 m，缝宽介于 6.78~9.16 mm，

整体呈现出储隔层抗拉强度差越大，缝高越大、缝长越

小的现象(图 6，图 7)。由于抗拉强度减小，岩石形变会

由均匀塑性形变转为集中塑性形变[21]，导致岩石更易

破裂，所以隔层较小的抗拉强度有利于提升多类型储层

体积压裂的效果。 

3.1.3    储隔层弹性模量差和泊松比差

在模拟实验中，煤储层弹性模量为 5.95 GPa，泊松

比为 0.39；砂岩储层弹性模量为 43 GPa，泊松比为 0.21。
将泥岩隔层弹性模量设置为 34、37、40、43、46 GPa，
对应的储隔层弹性模量差 ΔE 为 9、6、3、0、−3 GPa。

另外，将泥岩隔层泊松比设置为 0.17、0.19、0.21、0.23、
0.25，对应的储隔层泊松比差 Δν 分别为 0.04、0.02、0、
−0.02、−0.04，其他参数保持不变。
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图 6    储隔层抗拉强度差对裂缝垂向几何形态的影响
Fig.6    Impacts of the difference in tensile strength between reser-

voirs and barriers on the vertical geometrical morphology of
fractures

 

不同的储隔层弹性模量差下，裂缝的缝高均为 25.2 m，

缝宽介于 8.98~9.19 mm；不同的储隔层泊松比差下，裂

缝的缝高均为 25.2 m，缝宽介于 8.98~9.30 mm(图 8)。
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图 4    储隔层最小水平主应力差对缝长的影响
Fig.4    Impacts of the difference in minimum horizontal in-situ

stress between reservoirs and barriers on fracture length
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各曲线间差异极小，说明储隔层弹性模量差和泊松比差

对裂缝在层间扩展影响较小，这与弹性模量和泊松比是

衡量储层可压性的关键参数的认识不一致[22-24]。

为了进一步验证，本文统计了近年来水力压裂模拟

结果[25-33] 和临兴地区实际裂缝监测数据(图 9)。结果

显示，仅文献 [29] 的研究表明缝长随着弹性模量和泊

松比增大而下降，但弹性模量由 12 GPa 增大到 48 GPa
的过程中，缝长仅减小了 20%；随泊松比由 0.116 增大

至 0.464 的过程中仅减少 9%(图 9b、图 9d)。也就是说，

弹性模量和泊松比对缝高和缝长的延伸影响极小，这与

实际压裂监测数据相一致。 

3.2    工程参数对裂缝形态的影响

在实际开采过程中，地层参数可供选择范围有限，

且难以改变，施工中主要通过调节工程参数来改变压裂

效果[34-38]。其中，压裂液黏度和排量是影响裂缝扩展的

重要因素。在实验模拟中压裂液的泵注排量 Q 分别设

置为 1、2、4、6、9 m3/min。另外，将压裂液的黏度 μ 分

别设置为 1、20、50、100、200 mPa·s。
从实验结果来看，压裂液的泵注排量、黏度的变化

对裂缝垂向几何形态存在影响(图 10)。不同泵注排量

下，裂缝的缝高和缝宽分别介于 16.0~25.2 m 和 4.31~
10.68 mm，整体呈现出压裂液泵注排量越大裂缝延展

越大，缝长也随着泵注排量的增加而呈现出明显的增加

趋势(图 11a)；不同黏度下，裂缝的缝高均为 25.2 m，缝

宽介于 7.62~9.92 mm(图 10b)。总体规律为，缝宽随着

压裂液黏度的增大而增大，缝长随着压裂液黏度的增大

而减小(图 11b)。 

3.3    裂缝穿层能力

前人研究多集中于单储层压裂，希望将裂缝限制在

储层内部(裂缝控高)[39-43]。而多储层压裂需要较大的

缝高来满足其同时压裂多个储层的目的。除缝高外，裂

缝的穿层能力是衡量多储层压裂的一项重要指标，本文
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图 7    储隔层抗拉强度差对缝长的影响
Fig.7    Impacts of the difference in tensile strength between

reservoirs and barriers on fracture length
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通过压裂过程中裂缝穿过上层泥岩的时间来表征。

结果显示，在裂缝未被限制在上部岩层中时，储隔

层的最小水平主应力差、抗拉强度差和弹性模量差越

大裂缝突破泥岩隔层的时间越短(图 12)。由图 12b 显

示，泊松比的变化对其突破上层泥岩隔层所需时间并没

有明显趋势。综上所述，储隔层最小水平主应力差、抗

拉强度差和弹性模量差对煤系储层合采压裂过程中裂

缝的穿层能力有一定影响，泊松比差对裂缝的穿层能力

影响不大。

工程参数方面，压裂液的泵注排量和黏度对裂缝的

穿层时间影响较大。整体来看，压裂液泵注排量越大裂

缝突破泥岩隔层的时间越短；压裂液黏度增加裂缝突破

泥岩隔层的时间呈先增加后减小的趋势(图 13)。 

3.4    合采储层压裂建议

综上，为了保证合采效果，在煤系气合采选层时，需

重点关注储隔层最小水平主应力差、抗拉强度差这两

个关键因素。储隔层的最小水平主应力差直接影响裂

缝的扩展，理想范围应在 0~4 MPa，以避免过大的应力

差限制裂缝缝高并导致隔层裂缝过长。其次，储隔层的

抗拉强度差大于 4.5 MPa 时有利于裂缝在垂向的扩展。
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图 9    弹性模量和泊松比对缝高和缝长的影响
Fig.9    Impacts of modulus of elasticity and Poisson's ratio on fracture height and length

 

−6 −4 −2 0 2 4 6

−15

−10

−5

0

5

10

15

砂岩层

泥岩层

砂岩层

缝
高

/m

缝宽/mm

(a) Q

(b) μ

Q=1 m3/min

Q=2 m3/min

Q=4 m3/min

Q=6 m3/min

Q=9 m3/min

砂岩层

煤层

泥岩层

−6 −4 −2 0 2 4 6

−15

−10

−5

0

5

10

15

砂岩层

泥岩层

砂岩层

缝
高

/m

缝宽/mm

砂岩层

煤层

泥岩层

μ=1 mPa·s
μ=20 mPa·s
μ=50 mPa·s
μ=100 mPa·s
μ=200 mPa·s

图 10    工程参数对裂缝垂向几何形态的影响
Fig.10    Impacts of different engineering parameters on the geomet-

rical morphology of fractures
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Fig.11    Impacts of different engineering parameters on fracture
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泊松比虽对裂缝形态影响有限，但需注意其对裂缝起裂

角的潜在影响[44]。此外，在储隔层性质相似时裂缝更

易穿透，而在性质差异较大的岩层交界处，裂缝会优先

向较薄弱层扩展。工程方面，增加压裂液泵注排量至

4 m3/min 以上，能显著增加裂缝波及面积和穿层能力，

而压裂液黏度则需控制在 50~200 mPa·s，以优化缝宽

与缝高的关系。
 

4    结 论

(1) 储隔层最小水平主应力差、抗拉强度差、泵注

排量和黏度是深部煤系气合采压裂裂缝扩展的主控因

素，各值增大，裂缝的缝高和缝宽也随之增大。且在较

大的储隔层最小水平主应力差、抗拉强度差和压裂液

泵注排量下，裂缝的穿层能力会大幅增强。

(2) 不同类型储层内裂缝宽度主要受最小水平主应

力差影响。在致密砂岩层内裂缝宽度随储隔层最小水

平主应力差的增大而减小，在泥岩层内随着最小水平主

应力差的增大而增大，即该岩层相对最小水平主应力越

大，裂缝宽度越小。

(3) 弹性模量对缝高和缝长的延伸影响较小，其对

压裂的影响主要体现在裂缝的穿层能力上。而泊松比

的变化对裂缝的扩展和穿层能力几乎没有影响。

(4) 产层组合优选中，应首先选择储隔层最小水平

主应力差在 0~4 MPa，抗拉强度差大于 4.5 MPa 的井位

进行合采压裂。同时压裂液排量大于 4 m3/min，压裂液

黏度控制在 50~200 mPa·s，以达到最优压裂效果。 

符号注释：

GC
n GC

s

C 为固体与流体变形的耦合参数；G 为多孔介质

的 Lamé参数；GC 为混合模式下裂缝单元总临界能量释

放率，Pa·m； 和 分别为裂缝单元破坏所需的切向、

法向临界断裂能量释放率，Pa·m；Gs、Gt、Gn 分别为法

向、第一切向及第二切向断裂能 GT 为实际总能量释放

率，Pa·m；M 为孔隙流体的弹性参数；p 为孔隙压力，Pa；
t 为牵引应力矢量；W为单元刚度矩阵；γij 为应力张量，

Pa；λ 为多孔介质的 Lamé参数；εv 和 εij 分别为体积应变

和应变张量；δij 为克罗内克尔函数(i 和 j 表示三维空间

中的 6 个分量)；ζ 为流体相对于固体变形的体积应变参

数；εn、εs、εt 为名义应变(n、s、t 表示三维空间的三个分

量)；η 为材料参数。
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