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煤矿井下采掘工作场景非均质图像去雾与增强技术
张旭辉1,2，解彦彬1，杨文娟1,2，张　超1，万继成1，董　征1，王彦群1，蒋　杰1，李　龙1

(1. 西安科技大学 机械工程学院，陕西 西安 710054；
2. 陕西省矿山机电装备智能检测重点实验室，陕西 西安 710054)

摘要:  【目的】针对煤矿井下采掘作业中采煤和除尘活动引发尘雾分布不均及复杂光照条件，导致

视频图像模糊不清、信息量和细节丢失等问题，提出了一种井下采掘工作场景非均质图像去雾与增

强技术。【方法】首先对雾图进行区域分割，计算不同亮度区域的全局暗通道环境光均值，并与通

过自适应伽马矫正和多尺度高斯滤波得到的局部亮通道环境光进行加权融合，以获得精确的环境光

估计。为了保证图像细节的同时实现自然去雾效果，采用多尺度融合矫正技术处理透射图，并利用

联合双边滤波得到精细化的透射图，结合大气散射模型，实现尘雾图像的清晰化。针对去雾后的图

像整体较暗且对比度不足，进一步采用修正白平衡处理，将图像转换到 HSV 空间，提出自适应饱和

度矫正和改进对比度增强算法，并结合拉普拉斯锐化提升图像的细节和对比度。【结果和结论】通

过选取 DCP、MRP、OSFD、MF-LIME、CEEF 5 种算法处理真实典型的场景图像，并采用多项指标

与本研究算法处理结果进行对比实验，结果表明：与新颖优秀算法的最优指标对比，提出算法相比 CEEF

在平均梯度的平均提升约为两倍，提升了图像的清晰度；相比 MRP 的信息熵平均降低约为 1%，保

留了更多图像信息；相比 OSFD 的标准差平均提升约为 6%，改善了图像对比度；相比 CEEF 的 FADE

平均降低约为 23%，能更有效地降低尘雾密度且运行速度较快，表现出更优越的性能。提出的算法

能够有效提高煤矿井下采掘工作场景中模糊图像的视觉效果和图像质量，增强了其在工程应用中的

实用性。

关　键　词：区域分割；暗亮通道融合；对比度增强；修正白平衡；自适应饱和度矫正；采掘作业
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A dehazing and enhancement algorithm for heterogeneous images of
underground mining environments in coal mines
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Abstract: [Objective] In coal mines, the uneven distribution of dust haze and complex illumination conditions caused
by underground coal mining and dust removal lead to blurred video images, as well as the loss of information and de-
tails. Hence, this study proposed a dehazing and enhancement algorithm for heterogeneous images of underground min-
ing  environments. [Methods] Initially,  hazy  images  were  segmented  into  zones  with  different  brightness  values,  for
which the average ambient light intensity of global dark channels was calculated. The calculation results were integrated
through weighting with the ambient light of local bright channels, which was obtained using adaptive gamma correction
and multiscale  Gaussian  filtering.  Consequently,  accurate  ambient  light  intensity  estimates  were  determined.  To  pre-
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serve image details while achieving natural dehazing effects, transmission maps were processed using multiscale fusion
correction technology and were then refined using joint bilateral filtering. Afterward, clear hazy images were obtained
using the atmospheric scattering model.  To further enhance the overall  brightness and contrast  of the dehazed images,
white balance correction was performed. Specifically, images were converted into the hue-saturation-value (HSV) color
space. Then, the details and contrast of images were enhanced using the proposed adaptive saturation correction and im-
proved contrast enhancement algorithm, as well as Laplacian sharpening. [Results and Conclusions] Images of typical,
actual scenarios were processed using five algorithms: dark channel prior (DCP), maximum reflectance prior (MRP), op-
timal-scale fusion-based dehazing (OSFD), multiscale fusion – low light image enhancement (MF-LIME), and contrast
enhancement  and  exposure  fusion (CEEF). The  processing  results  of  these  algorithms  were  those  of  the  proposed  al-
gorithm based on multiple indicators. The results indicate that compared to the above novel and excellent algorithms in
terms of their optimal indicators, the proposed algorithm exhibited that: (1) The average gradients were approximately
twice those obtained by CEEF, suggesting elevated image clarity. (2) The average information entropy decreased by ap-
proximately 1% compared to that of MRP, implying more information preserved. (3) The standard deviation increased
by approximately 6% on average compared to OSFD, representing improved image contrast. (4) The average fog aware
density evaluator (FADE) value by approximately 23% compared to CEEF, implying an effective reduction in the haze
Therefore, the  proposed  algorithm  can  effectively  improve  the  visual  effects  and  quality  of  blurred  images  of  under-
ground mining environments in coal mines, exhibiting high utility in engineering.

Keywords: regional segmentation; dark-light channel fusion; contrast enhancement; white balance correction; adaptive
saturation correction; mining operations

 

随着煤矿智能化，无人化发展推动人工智能和图像

处理技术在智慧矿山建设中的应用发展意义重大，对于

保障作业安全、提高生产效率具有至关重要的作用[1-2]。

然而，井下采掘设备作业环境常常伴随着光照不均，开

采煤尘和喷雾降尘形成不同浓度的雾区，从而影响视频

监控和图像采集的清晰度和可见度[3-4]，对远程操控、人

员识别、图像分割和视觉定位带来极大困难。因此，对

采掘工作场景尘雾图像进行深度去雾和图像增强具有

重要的现实意义和应用价值[5]。

目前国内外针对井下图像去雾技术主要分为 3 大

类[6]：基于非物理模型的图像增强技术，基于深度学习

的图像去雾技术，基于物理模型的图像复原技术。基于

非物理模型的图像增强技术根据应用需求增强有用信

息，削弱或消除无用信息，从而突出细节，提高对比度，

使图像更加清晰可辨。单幅图像增强算法应用比较广

泛的有：Retinex 算法 [7]，直方图均衡化算法化 (histo-
gram equalization，HE)[8]，偏微分方程算法[9]，小波变换

算法[10] 等。针对煤矿井下有雾图像增强研究，许多学

者基于 Retinex 算法进行改进和延伸，结合双边滤波和

多尺度 Retinex 可以提升图像清晰度和亮度，但在不均

匀雾霾下效果不佳[11]。通过自适应伽马校正和多权重

融合 Retinex 可以去除尘雾并增强细节，但在高亮度区

域容易造成失真和噪声放大[12]。

基于深度学习的图像去雾技术相比传统的图像增

强技术，能根据图像自身的特征学习复杂的去雾模型，

从而实现更加精准和高效的图像去雾效果。其中端到

端网络和逐层处理技术可以有效提升去雾效果[13-14]，有

学者利用 MAXIM 网络优化局部与全局处理[15]，而无

监督学习网络 CycleGAN 能够在无配对数据的情况下

实现图像间的转换，注意力机制的引入提升了抗干扰能

力，增强了矿井图像的去雾和细节保留[16]，但此类方法

的去雾效果受采集的数据集影响且模型可解释性不强。

基于物理模型的图像复原技术主要是基 于大气散

射物理学模型[17]，分析自然图像的统计规律以及雾霾

对图像的影响，得到图像中存在的一些映射关系，推导

出有雾图像形成的过程，并进行逆向运算以恢复出清晰

图像。其中最具代表性的是暗通道先验去雾 (dark
channel prior，DCP)[18]，利用自然图像中的局部对比度

和颜色饱和度的统计规律，通过寻找图像的暗通道来估

计雾的浓度，并据此进行去雾处理。但该算法在估计大

气光值时通过遍历图像的方法会导致计算量过大，并且

在像素数量较少的情况下，可能难以有效地分析区域之

间的亮度变化趋势。通过引入引导滤波[19] 精细化透射

图可以有效消除光晕效应，取得较好的复原效果。然而，

暗通道先验对低对比度区域的边界和细节的分析能力

有限。结合井下的特殊环境，不同学者对大气散射模型

参数估计和暗通道先验方法进行了改进和补充。结合

暗原色原理和主成分分析能提升煤矿井下雾尘图像的

清晰度，但独立求解透射率与大气光值可能影响去雾效

果[20]。通过分析尘雾分布特征进行区域分割，利用颜

色衰减和大气散射模型能降低雾浓度并改善图像照度，

但运算复杂度较高，近光点可能过曝[21]。利用图像混

合技术和亮度调整可提高图像亮度，但细节增强和浓雾

区域去雾效果有限，高亮区域效果不自然。通过调节光

照，使用单尺度 Retinex 算法和引导滤波等技术能解决

过曝和噪声问题，但会抑制整体亮度[22-23]。
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综上所述，针对采掘工作面图像尘雾分布不均和多

光源影响，现有算法在环境光估计不全面和透射图估计

困难容易造成浓雾区域去雾效果不明显，图像增强后效

果不自然，提出一种井下采掘工作场景图像去雾与增强

技术，可以有效降低去雾图像的不均匀雾浓度，提高对

比度和清晰度，改善图像的视觉效果和信息丰富度。 

1    去雾算法基本原理
 

1.1    暗通道先验去雾算法

在计算机视觉中，雾天图像退化模型常用于模拟雾

霾等恶劣天气对图像造成的视觉效果，该模型最初由

E. J. Mccartney 等 [17] 提出，分为衰减模型和环境光模

型 2 个部分。模型表达式为：

I(x,y) = J(x,y)t(x,y)+A(1− t(x,y)) (1)

I(x,y)

J(x,y)

为了从有雾图像 恢复得到清晰无雾图像

，需要对模型进行归一化和最小化运算得到：

min
(x,y)∈Ω(x,y)

[
min

Ic(x,y)
Ac

]
=

t(x,y) min
(x,y)∈Ω(x,y)

[
min

Jc(x,y)
Ac

]
+1− t(x,y)

(2)

Jd(x,y)

He Kaiming 等[18] 发现，在无雾彩色图像中，非天空

区域的颜色通道值通常接近 0，代表局部区域内最小值。

通过滑动窗口在图像上寻找最小通道值即可得到整个

图像的暗通道 ，表达式为：

Jd(x,y) = min
(x,y)∈Ω(x,y)

[
minJc (x,y)

]
= 0 (3)

t(x,y)将式(3) 代入式(2) 化简可得透射率分布 ：

t(x,y) = 1−ω min
(x,y)∈Ω(x,y)

[
min

Ic(x,y)
Ac

]
(4)

A

为了防止去雾太彻底，恢复的图像不自然，一般设

置 ω 为 0.95。在暗通道图像中，最亮的像素区域通常

反映了大气光的影响。通过选取这些最亮像素，并在原

图中找到对应的最亮点，计算它们的平均亮度，可以估

计大气光值 ，进而还原清晰图像，具体公式为：

J(x,y) =
I(x,y)−A

t(x,y)
+A (5)

 

1.2    亮通道原理

在图像处理中，亮通道是与暗通道相对应的概念[24]。

暗通道是图像中受雾霾等影响而变暗的区域的最小像

素值通道，而亮通道 Il(x，y) 则是最大像素值通道，表达

式为：

I l(x,y) = max
(x,y)∈Ω(x,y)

[
maxIc (x,y)

]
(6)

亮通道通过提取图像中的高亮区域来捕捉大气光

信息。与暗通道相比，亮通道不易受局部阴影或低光照

影响，更能准确反映大气光强度。因此，亮通道像素点

强度更加趋近于大气光强度，即：

I l(x,y)→ Al(x,y) (7)

亮通道通常基于局部亮度进行估计，这意味着它提

供了更全面的背景参考，有助于更准确地捕捉到大气光

的强度。由以上可知，用有雾图像的亮通道作为大气光

强度的估计是有意义的。 

2    总体方案

去雾算法流程如图 1 所示，首先通过区域分割和暗

亮通道环境光融合策略获得精确环境光，对不同尺度透

射图融合矫正并使用联合双边滤波细化透射图，结合大

气散射模型恢复去雾图像并通过通道矫正和图像锐化

增强图像对比度和色彩，从而实现图像的清晰化处理。 

3    暗亮通道融合的图像去雾算法
 

3.1    区域分割

采煤机在工作时会产生大量粉尘，在喷雾降尘的过

程中也会造成大量浓雾，再者井下通风不佳导致工作区

的浓雾很难减退，非工作区的薄雾很难消散，进而影响

雾浓度的分布。

尘雾图像中的每个灰度像素值代表了该位置的亮

度信息。对于雾气图像，浓雾区域的亮度值一般较高，

薄雾区域的亮度值相对较低。通过对图像像素值进行

平方运算，亮区域(浓雾)与低亮区域(薄雾)之间的差距

被显著放大，使得这 2 个区域的边界更加明显。定义图

像亮度差异为：

G′ (x,y) = f (x,y)× f (x,y) (8)

g(x,y)

但由于井下存在人工光源过亮可能会导致光源与

浓雾区域分割困难，会使大气光值的估计不够准确，因

此设定阈值上限为 0.85 作为光源区域的分割边界，阈

值下限的设定受到不同图像大小和雾浓度的影响，并且

决定浓雾和非浓雾区域分割的准确性，因此，本文改进

了一种自适应阈值分割方法。首先将图像从 RGB 转

换为 HSV 空间，然后根据颜色衰减先验理论计算雾浓

度图 ，具体的计算公式为：

g(x,y) =
v(x,y)− s(x,y)

v(x,y)+ s(x,y)+h(x,y)
(9)

F(x,y)

采用上式得到的浓度图虽然能够反映雾霾浓度，但

容易受到亮度和色相的影响，通过将图像划分为多个像

素块并计算像素块内的饱和度均值和方差，利用饱和度

均值越高，方差越小，雾浓度修正值越小的原理建立映

射关系，对浓度图的每个像素块进行修正并计算修正后

的雾浓度均值 ，同时引入 V 通道的全局亮度均值
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L(x),则设定阈值下限的表达式为：

Tmin = L(x)×F(x,y) (10)

则总的表达式为：

P(x,y) =
1, if Tmin ⩽G′(x,y) ⩽ 0.85

0, 其他
(11)

通过结合雾浓度和光照水平从而适应不同的光照

条件和尘雾浓度，最后结合开运算除去图像中的小物体

和噪声，平滑边界得到最终的浓雾分割图。为了防止不

均匀光照被分割为浓雾，根据文献 [4] 中雾浓度的检测

方法，将浓雾区域的像素阈值设置为总像素数目的

20% 进行筛选得到浓雾连通域。对比图 2a 和图 2b 可

以明显看出光源区域和低亮度区域都被分割了出来，从

而得到精确的浓雾区域分割图。通过雾区分割处理后，

将光源区域、低亮区域和浓雾区域分割开来。 

3.2    大气光值估计

暗通道先验算法估计大气光时，这个估计的大气光

值通常是一个全局的估计常值，并没有考虑图像中的局

部光照变化。同时，由于暗通道值通常反映了雾霾场景

下的天空光照强度，但这种假设可能受到局部特征的影

响，例如阴影或局部反射等，从而导致大气光估计不准

确，导致去雾不彻底。

为了使大气光能够更准确地反映光照变化，先获得

A(x,y)

有雾图像每一个像素的 RGB 3 通道最大值，得到一幅

亮度图，为了保留更多的局部特征减少边缘模糊，在这

幅亮度图像中，以每一个像素为中心采用大小为 3×3
的滤波窗口，以窗口中的像素最大值代替中间像素灰度

值，进而得到有雾图像的亮通道，也称为初始光照分布

。

由于井下采掘和降尘会使空气中悬浮大量的颗粒

物和水滴，光线会被散射和吸收，导致图像中的暗区域

和亮区域细节丢失、对比度降低，从而使光照矩阵估计

不均匀。同时，在对有雾图像的暗区域进行光照估计时，

采用较小的滤波窗口对初始光照矩阵进行估计可能会

导致整体亮度较低且像素值容易溢出，因此，需要对初

 

环境光照估计

亮通道局部
光照图 A (x, y)

一次光照矫
正图 A′ (x, y)

光源区域 加权融合光照图

融合暗通道
环境光

浓雾区域

阴暗区域

局部透射图

融合矫正透射图精细化透射图
联合双边
滤波

大气散射
模型

不同滤波窗口
求解透射图

全局透射图

透射图估计

清晰化图像增强图像

去雾图像 J (x, y)

井下雾图 I (x, y)

修正
白平衡

V 通道
对比度增强

S 通道
饱和度矫正

通道
归一化

高斯−拉普拉斯
锐化

区域分割

二次光照矫
正图 A′′ (x, y)

自适应伽马

矫正

多尺度高斯

滤波

图 1    煤矿井下采掘工作场景非均质图像去雾与增强算法的总体流程
Fig.1    Overall process of the dehazing and enhancement algorithm for heterogeneous images of underground

mining environments of coal mines
 

(a) 有雾图像 (b) 浓雾分割图像

图 2    浓雾图像分割
Fig.2    Image segmentation for dense haze
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始光照分布暗区进行适当提亮，亮区进行适当抑制。使

用改进自适应伽马矫正调节大气光，具体公式为：

A′(x,y) = 1−α
∣∣∣∣∣A(x,y)

1
4 −1

∣∣∣∣∣ 1
2

(12)

α α
α α = 0.5

亮度调节因子 的取值为 [0,1]，较大的 值会使去

雾不彻底，较小的 值使细节减少，因此设定 ，

在去雾较好的同时可以保留更多细节。由图 3a 和

图 3b 对比可以看出，自适应伽马矫正后的浓雾区域过

渡更加自然均匀。
 
 

(a) 亮通道图像 (b) 自适应伽马矫正

图 3    亮度调整
Fig.3    Brightness adjustment

 

结合图 4 中 2 个直方图可以看出，未经过伽马矫正

的光照分布直方图分布较为宽广，且存在较多亮度较高

和较低值；伽马矫正后的直方图分布与未经过矫正相比

更为窄高，且亮度分量数据两边较亮和较暗的特征数量

值明显减少，噪声和不均匀光照影响减少，有助于更精

确地估计环境光。

A′(x,y)

A′′(x,y)

为了对光照分布进一步估计，同时防止恢复无雾图

像出现边缘锐化泛白等不自然现象，采用多尺度高斯函

数对一次光照分布调整的结果 进行二次矫正，得

到矫正后的光照分布 ，使用的滤波核窗口和方

差分别为 3、15、27 和 25、50、100，其表达式为：

A′′(x,y) =
1
3

3∑
i=1

G'
[
A′(x,y),ri, εi

]
(13)

I(x,y)

A′′(x,y)

为了更准确地估计大气光值，结合 3.1节分割的不

同区域分别通过选取暗通道最亮的前 0.1% 的像素，在

原始雾图 找到对应的点计算它们的平均亮度，并

对得到的 3 个亮度值平均作为全局大气光值 A1，并与二

次矫正后的光照分布调整结果在对应位置做加权融合，

得到最终大气光图。针对井下低亮度、雾气较重的场

景，因为暗通道能更好地反映污染严重的区域，设定 A1

的权值为 0.8， 的权值为 0.2。表达式为：

A′′′(x,y) = A′′(x,y)×0.2+A1×0.8 (14)

经过多尺度矫正后算法能适应不同尺度特征从而

更精准地估计光照，适用于更多场景和光照条件。对比

图 5a 和图 5b 可以看出，经过光照矫正的大气光图降

低了图中物体亮度的影响，使浓雾局部区域内的大气

光强度与周围大气光相交更加柔和，并且平滑了噪声和

纹理。
  

(a) 光照分布矫正 (b) 精确大气光

图 5    光照矫正
Fig.5    Illumination correction

  

3.3    透射率估计与图像恢复

3×3 5×5

11×11 13×13

7×7 9×9

3×3

15×15

在进行透射图估计时，采用较小的滤波窗口可以保

持图像细节和边缘，但可能会导致去雾图像亮区过饱和，

暗区细节丢失，而较大的滤波窗口可以使图像更加平滑，

颜色恢复自然，但会存在去雾不彻底，影响浓雾区域的

细节恢复。文献 [25] 采用 8 100 张加噪点图像通过不

同的滤波窗口进行处理后与清晰图像从多个指标进行

评估统计。在处理多数场景图像时，发现 和 的

小尺寸滤波窗口以及 和 的大尺寸滤波窗

口能够达到最优的图像质量指标，而 和 的滤波

窗口恢复的图像整体质量较差。因此，选取 的小滤

波窗口最大化保留井下图像局部复杂的纹理和细节，为

了在噪声平滑和细节保留间取得平衡，使透射图包含更

多的尺度信息，同时考虑到井下图像的分辨率和处理效

率，选取 的大滤波窗口可以适应更多的井下场景
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(a) 伽马矫正前

(b) 伽马矫正后

图 4    伽马矫正前后光照分布直方图对比
Fig.4    Histograms showing the comparison of illumination

distributions before and after gamma correction
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和噪声水平，从而提出一种新的透射图融合方法：

t =max(tλ1

1 ×β1+ tλ2

2 ×β2,Tmin) (15)

λ
0 ⩽ λ ⩽ 1

λ > 2

1 < λ < 2

β1 = β2 = 0.5 λ

为了确保两个尺度的透射图都能够在对比度上达

到一致，  将两个对比度调节因子设定为同一值 ，当

，图像的对比度会被减弱从而失去去雾效果，

当 时，图像的对比度被极大增强导致暗区过暗和

亮区过曝，当 时，可以在保证细节和图像自然

度的同时，提升去雾效果和图像清晰度。 选用大量测

试图片确定融合参数的选取，以图 2 中的第二幅有雾图

像为例，测试了不同 λ 取值对去雾和整体视觉效果的影

响。因为对比度调节因子对透射图的影响远大于缩放

因子，所以设 ，当 取不同值时针对透射图

融合改进的去雾图像效果如图 6 所示。
  

(a) λ=1.1 (b) λ=1.2 (c) λ=1.3

(d) λ=1.4 (e) λ=1.5 (f) λ=1.6

λ图 6    不同 取值的去雾效果
λFig.6    Dehazing effects under varying  values

 

λ = 1.3

λ = 1.3

通过对比可以看出，当 时可以保证有效去除

暗区浓雾的同时保留了更多的铲板细节，过大或过小的

取值会导致暗区信息大量丢失或去雾效果不佳。因此

设定 。

为了进一步提高图像对比度和信息量并防止场景

亮度变化过大，需要选取对应的缩放因子进行加权融合，

采用标准差、灰度均值和信息熵对缩放因子进行评估。

标准差越大图像对比度越大，灰度均值越大整体亮度越

高，信息熵越大图像信息量越丰富。为了使指标的变换

更加广泛并有明显的规律，采取固定一个参数为 0.9，对
另一个参数进行调整从而得到不同参数的对比曲线，在

通过不断修改缩放因子对 3 项指标进行多次评估的过

程中发现如图 7 和图 8 所示的变化规律。当对两个缩

放因子设置参数值并对参数进行交换时，对灰度均值的

影响远大于另外两个指标的影响，随着缩放因子差值的

增大，3 项指标的差异也在不断变大。已知测试图像的

灰度均值、标准差和信息熵分别为 84.204、43.723 和

7.306，因此，为了防止去雾过于彻底导致图像亮度下降

过大，灰度值分布更加极端(靠近 0 或 255)，使信息熵和

β2 = 0.2，β1 = 0.9

对比度有所下降，综合考虑 3 项指标和图像的视觉效果，

最终选择 。
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图 7    缩放因子取值对灰度均值和标准差的影响
Fig.7    Impacts of scale factor on average gray value and

standard deviation
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图 8    缩放因子取值对信息熵的影响
Fig.8    Impacts of the scale factor on information entropy

 

针对不同尺寸滤波窗口和融合滤波窗口得到的透

射图分别如图 9 所示。

融合滤波窗口得到的透射图如图 9c 所示，对比

图 9a 和图 9b 可以看出，融合图像的透射图对比度有了

明显增强，细节进一步提升，同时有雾区域的透射率进

一步降低即透射图变暗，使得浓雾区域去雾效果更加显

著，图像更加清晰。为了进一步说明融合策略的效果，

采用平均梯度、信息熵和感知雾密度预测模型 (fog
aware density evaluator，FADE)[26] 对去雾图像进行评价。

平均梯度越大，图像越清晰；信息熵越大，图像信息越丰

富；FADE 越小图像的雾密度越小，得到的结果见表 1。
3×3

15×15

15×15

通过对 3 项指标对比可以看出， 的滤波窗口相

比 的滤波窗口恢复的去雾图像平均梯度提高了

10.86%，信息熵和 FADE 分别降低了 5.42% 和 46.67%，

具有更多的细节和更低的雾密度，但去雾后图像会使暗

区过黑暗造成煤壁和裂纹细节信息丢失，从而导致信息

熵下降过多。而采用融合滤波后的图像平均梯度相比

的滤波窗口提高了 7.88%，信息熵和 FADE 分别

下降了 1.87% 和 33.83%，在保留更多图像信息和较低
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雾浓度的同时提高了细节和清晰度。最后采用联合双

边滤波对融合透射图进行优化得到精确透射图，结合精

确大气光代入式(5) 即可进行图像去雾。在进行无雾图

像恢复的过程中，透射率太小趋近于 0 时可能会导致无

雾图像 J(x,y) 偏大，因此引入阈值调整参数 t0=0.1，则去

雾公式修改为：

J(x,y) =
I(x,y)−A(x,y)
max

[
t(x,y), t0

] +A(x,y) (16)

φ = 1.2

为了防止像素值溢出使去雾后图像整体变暗导致

信息丢失和色彩失真，对恢复图像像素截断操作并进行

色彩白平衡矫正使颜色更加自然，同时为了进一步保持

图像的整体亮度，引入修正因子 对恢复图像进行

乘积修正得到去雾后图像如图 10 所示，图 10a 组为有

雾图片，图 10b 组为基于暗亮通道融合去雾的清晰图片，

通过对比可以看出改进后的算法能有效除去雾气，使得

原本被雾遮挡的区域和细节变得清晰可见，明显增强了

图像细节和亮度。但处理后的图像仍存在局部对比度

和清晰度不足的问题，因此还需要进一步进行图像增强。 

3.4    去雾图像增强算法

由于去雾后图像依然存在对比度和饱和度降低，细

节不足的问题，需要进行饱和度校正和对比度调整，因

此提出去雾图像增强算法，算法处理流程为：将去雾后

的 RGB 图像转换为 HSV 图像空间，然后分离 H(色调)、
S(饱和度)、V(明度)三通道并对 S 和 V 通道单独进行处

理，最后将处理后的 S、V 通道和 H 通道合并，进行细

节增强得到增强后的目标图像，具体流程如图 11 所示。

针对去雾图像整体亮度和对比度降低的问题，可

对 V 通道进行对比度增强，限制对比度自适应直方图

均衡化(contrast  limited adaptive histogram equalization，
CLAHE) 是一种局部增强方法，通过限制对比度的增加

来防止图像失真[27-28]。此外，CLAHE 使用插值方法处

理图像块之间的边界，确保图像的整体一致性，从而更

好地保留图像细节并提高图像对比度，但容易出现局部

对比度过增强。伽马矫正可以调整图像的整体亮度和

对比度，而 CLAHE 可以调整局部对比度，两者结合可

以更全面地增强图像的各个部分。同时为了防止过度

补偿，通过归一化伽马矫正的 CLAHE 处理保留了图像

的全部动态范围特征，使对比度增强更加自然明显[29]。

为了解决去雾后图像存在非浓雾区域整体饱和度

较低和浓雾区域饱和度较高的问题，提出一种饱和度自

适应矫正算法对 S 通道饱和度分量进行自适应调整，具

体表达为：

S ′(x,y) = S (x,y)×(
exp(−0.5× |Rs−1|)+ 2

π
× arctan(k× (T −Dv))

) (17)

当原像素点雾浓度较高时，含有 Rs 项的部分小于

1，含有 Dv 项的部分为负值对饱和度进一步降低；当原

像素点雾浓度较低或无雾时，含有 Rs 项的部分趋于 1，
含有 Dv 项的部分为正值对饱和度进一步增强，通过调

整可以使得去雾图像的饱和度更加平滑和自然。

为了进一步提高井下图像的清晰度并平滑噪声，采

 

(a) 15×15 滤波窗口

(c) 融合滤波窗口

(b) 3×3 滤波窗口

图 9    透射图优化
Fig.9    Transmission map optimization

 

表 1    不同滤波窗口去雾图像的评价结果
Table 1    Assessment results of dehazed images based on

filtering using varying windows

窗口大小 平均梯度 信息熵 FADE

3×3滤波窗口 66.143 6.280 0.216

15×15滤波窗口 59.663 6.640 0.405

融合滤波窗口 64.357 6.516 0.268

 

(a) 去雾前 (b) 去雾后

图 10    去雾前后效果对比
Fig.10    Comparison of the images before and after dehazing
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用高斯−拉普拉斯对图像的边缘进行检测。首先通过

高斯滤波减少高频噪声，计算经过高斯平滑后的图像的

二阶导数，最后通过卷积将高斯−拉普拉斯算子(Lapla-
cian of Gaussian，LoG) 应用于图像，以突出边缘信息从

而在边缘检测时得到更清晰的结果。定义的 LoG 算子

如下：

LoG =

 0 −1 0
−1 5 −1
0 −1 0

 (18)

θ 1− θ

θ

通过对每个原图像素点和拉普拉斯处理的图像进

行加权融合来锐化图像，为了增强细节的同时防止细节

过增强导致图像不自然，需要确定合理的融合参数，设

定原图和处理后图像的加权系数分别为 和 。采用

平均梯度、信息熵、SSIM 和视觉信息保真度(visual in-
formation fidelity，VIF)[30] 进行评估，平均梯度是基于特

征量的度量，数值越大图像越清晰；信息熵是基于信息

量的度量，数值越大图像信息量越多；SSIM 是基于结

构相似性的度量，因为它能够量化去雾图像与清晰图像

的结构相似性，SSIM 越大结构越相似去雾图像越清晰

自然。但由于在井下环境中获取清晰无雾的对照图像

较为困难，且人工造雾的效果并不理想，因此，通过图 10
中的去雾图像与增强图像获得 SSIM 参数值。虽然去

雾图像会使不均匀雾背后的图像信息显示，但会使亮度

较低或较高区域的细节结构几乎全部弱化或过增强，造

成图像细节丢失，从而与清晰图像在结构上存在较大差

异，但为了保证增强后图像与去雾图像保持一定的结构

相似性防止不自然，因此 SSIM 的参数值不宜过低；

VIF 是基于人类视觉感知的度量，数值越大保留更多的

视觉信息，图像质量越高。对 4 项指标进行最大最小值

归一化至 [0,1]，步长为 0.1 进行数据分析，不同的 值对

图像指标的影响如图 12 所示。

θ

0.2 < θ ⩽ 0.3

θ

通过对比发现随着 的增大，平均梯度、信息熵和

VIF 均下降，而 SSIM 一直提升。当 时，信

息熵的下降和 SSIM 的增加变化均达到最大，如果选择

更高的 值会使相似度提升较小，但其余指标下降较多。

因此，为了达到图像质量，清晰度和信息量最大化的同

时防止图像相似度差异过大，设定原图和处理后图像的

加权系数分别为 0.3 和 0.7。 

4    实验结果与分析
 

4.1    数据集图像选取

实验图像来自于真实的煤矿井下采掘作业和喷雾

降尘过程中的有雾图像 150 张构成的数据集，部分数据

集图像如图 13 所示，可以看出复杂的人工光源和不均

匀的尘雾分布是造成采掘场景清晰化程度低，视觉效果

差的最主要原因。因此，为了验证算法在处理此类场景

的有效性和先进性，选取 4 张具有代表性的不同浓度尘

雾的综采工作面工作和非工作场景图像，与 DCP[18]、

MRP[31]、OSFD[32] 和 MF-LIME[33] 以及 CEEF[34] 5 种算

法从主观和客观两个方面进行对比实验，DCP 为基础

的暗通道先验算法，MRP 和 OSFD 是针对夜间低照度

 

归一化伽
马矫正的
CLAHE

自适应饱
和度矫正

H

S

V

高斯−拉普
拉斯增强

图 11    HSV 通道增强算法
Fig.11    Image enhancement algorithm based on HSV channels
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θ图 12    不同的 值对图像指标的影响
θFig.12    Impacts of  on image quality metrics
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有雾图像存在人工光照不均和可见度低的问题，结合大

气散射模型和环境先验估计模型参数实现图像清晰化

的算法，MRP 算法核心思想在于一种新的最大反射率

先验估计，可以使得去雾后图像亮度提高，OSFD 算法

通过提出一种最佳尺度的最大反射率先验，通过将色彩

矫正和雾霾去除分开处理，可以有效去除色偏和不均匀

雾。MF-LIME 是基于 Retinex 模型和多尺度融合的低

照度图像去雾算法[33,35]，其优势在于亮度均衡和细节增

强。CEEF 算法是针对直方图均衡化算法进行的改进

和进一步融合，提出保色直方图均衡化(color-preserving
AHE，CP-AHE) 来提高输入模糊图像的全局对比度，使

低照度朦胧场景保留精细的细节，并减少夜间除雾方法

的彩色伪影。本文所有算法均在 Intel(R)Core(TM)i7-
9750HCPU@2.60 GHz，Win10 为操作系统的计算机设

备上进行，GPU 为 NVIDIA GeForce RTX 2060，编程语

言为 Python 和 Matlab。 

4.2    定性分析

场景 1 和场景 3 为采煤机工作时的尘雾图像(图 14)，
场景 2 和场景 4 为喷雾除尘时的尘雾图像。针对 4 种

场景，采用 MF-LIME 算法对于非均匀雾和浓雾区域几

乎失去去雾能力，但对少量雾和无雾区域的细节和亮度

具有很大的提升，但由于点光源和大片浓雾影响，导致

去雾后整体场景亮度过亮，视觉效果欠佳，而其余算法

均实现了不同程度的去雾，且场景恢复较为自然。针对

场景 1 浓雾区域较少且雾浓度较低，环境亮度较高的情

况，DCP 在整体去雾的同时降低了图像的亮度和对比

度，但使煤壁和落煤区域的细节大量丢失，OSFD 相比

MRP 算法在保持截割头区域和煤壁清晰化的同时对远

处工作面的雾尘也有一定程度的降低，CEEF 算法对于

薄雾的去雾具有较好的效果，但去雾后图像的整体亮度

降低，而本文算法在实现更彻底去雾的同时增强了煤壁

和远处工作面的亮度和细节。场景 2 浓雾区域较大且

雾浓度较高，环境亮度较高的情况，虽然 4 种算法均无

法实现彻底去雾，但是本文算法在实现雾浓度降低同时

使顶部护帮板显示更加清晰完整，运输区域的黑色箱子

整个凸显出来，顶部区域的灯光也得到了抑制，防止了

光源过度发散。场景 3 和场景 4 均为低照度环境下雾

浓度分布不均匀的情况，DCP 算法去雾效果优于文献

MRP 和 OSFD，但均会使图像细节和轮廓大量丢失，而

OSFD 相比文献 MRP 算法对浓雾去除的效果和色彩的

恢复更加自然，但依然存在浓雾区域去雾效果一般，薄

雾区域去雾不彻底的情况，而且在暗区的亮度没有适当

增强导致采煤机的整体轮廓显示不全，运输区域模糊不

清，CEEF 算法在浓雾区域存在明显色偏，而本文算法

达到无差别更有效去雾，使大量细节和浓雾遮挡物体显

 

图 13    部分数据集图像
Fig.13    Partial images in the datasets

 

场景 1

场景 2

场景 3

场景 4

原图 本文DCP MRP OSFD MF-LIME CEEF

图 14    不同算法在不同场景下的去雾效果对比
Fig.14    Comparison of dehazing effects of different algorithms for different scenarios
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现的同时对暗区的采煤机和输送区域的整体亮度和饱

和度均有明显提升，实现了对比度增强和清晰化去雾的

效果。 

4.3    定量分析

由于定性分析受到个体主观感受和主观偏好的影

响，存在一定的主观性和不确定性。因此，为了提高了

评价的客观性和可重复性，对算法进行定量分析。选取

了图像去雾领域常用的 4 个性能指标：平均梯度、信息

熵、标准差和雾浓度估计(FADE) 进行定量分析[36]。

平均梯度是衡量图像变化的指标，高梯度值意味着

图像边缘和细节清晰，而低梯度值则表示图像较为模糊。

在煤矿井下，高梯度值表明去雾图像更加清晰。各种去

雾算法的平均梯度见表 2，可以看出 DCP 处理后的图

像相比原图在平均梯度略有降低，而其余算法处理后的

图像均有明显提升，并且本文算法相比其他算法在不同

环境的各种场景均具有更高的平均梯度值，梯度增量约

为 MRP 和 CEEF 的 2 倍，图像清晰度更高。

 
 
 

表 2    不同算法的图像评价结果
Table 2    Image assessment results of different algorithms

方法
平均梯度 信息熵 标准差 FADE

场景1 场景2 场景3 场景4 场景1 场景2 场景3 场景4 场景1 场景2 场景3 场景4 场景1 场景2 场景3 场景4

原始图像 58.500 44.667 30.725 55.929 7.543 7.775 7.468 7.306 51.414 60.775 52.150 43.723 0.645 0.858 1.011 0.600

DCP 65.255 43.056 36.101 54.667 7.270 7.181 6.945 6.641 58.660 46.250 39.769 43.198 0.332 0.523 0.482 0.468

MRP 98.640 61.390 59.328 77.381 7.666 7.734 7.524 7.425 62.900 62.300 52.835 53.236 0.239 0.371 0.338 0.298

OSFD 86.229 61.613 55.958 71.727 7.578 7.700 7.513 7.318 59.507 64.781 57.890 52.127 0.240 0.349 0.349 0.287

MF-LIME 81.903 64.700 55.380 86.725 7.297 7.643 7.470 7.533 43.900 58.366 50.147 53.516 0.721 0.862 1.001 0.671

CEEF 90.166 64.460 63.872 85.069 6.968 7.206 7.313 7.220 59.539 60.763 45.513 52.090 0.131 0.242 0.242 0.181

本文算法 182.536 120.350 117.566 141.700 7.760 7.589 7.391 7.430 72.357 63.236 51.834 60.562 0.152 0.172 0.145 0.143
 

图像信息熵是衡量图像复杂度的指标，表示像素灰

度分布的不确定性。高信息熵意味着图像包含丰富信

息。在煤矿井下，去雾后图像信息熵的提升表明可以从

处理后的图像中获取更多的信息。各种去雾算法的信

息熵见表 2，可以看出由于 6 种算法压缩了像素值的变

化范围，在处理场景 2 图像信息时出现信息熵低于原图，

并且在雾面积较大且不均匀的情况下去雾后会使像素

值趋向一致，对比度增大也会使暗区和亮区的信息丢失，

从而导致信息熵有所降低，对于场景 1 和场景 4 经过本

文算法处理后图像的信息熵均有不同程度的提升，且都

优于其他算法，在处理场景 3 的图像时本文算法略有降

低，但与信息熵最优的 MRP 算法相比，本文算法处理

后的图像信息熵平均降低约为 1%。

图像标准差衡量亮度或灰度变化，反映图像对比度。

高标准差意味着高对比度和丰富细节，而低标准差则表

示图像较为平坦，对比度低。在煤矿井下，去雾后图像

标准差的增加通常表示图像对比度和亮度的提升，各种

去雾算法的标准差见表 2，可以看出本文算法在处理场

景 1 和场景 4 中的标准差相比，MRP 算法分别提升了

15.03% 和 13.76%，对比度明显提升，本文算法相比较

于 OSFD 在场景 2 和场景 3 的标准差虽然略低，但在

浓雾的去除和细节的恢复更加明显，同时本文算法与平

均标准差最优的 OSFD 算法处理后图像的标准差相比

平均提升约为 6%。

FADE 进行井下去雾图像的效果评价，可以提供无

参考、准确且全面的评价标准。这种方法能够适应不

同雾状环境，减少对主观评价的依赖，更能直接证明算

法的去雾效果。表 2 中，本文算法虽然在场景 1 的雾密

度略高于 CEEF,但在对其余场景进行去雾后均达到了

极低的雾密度，相比 CEEF 的 FADE 平均降低约为 23%，

算法的适应性更强，去雾和增强后的图像质量更好。

表 3 给出了针对不同场景不同算法的处理时长，该

时长是对同一张图像进行 20 次运算处理的平均耗时。

通过对比可以发现，由于 MRP、OSFD 计算复杂度较高，

虽然处理后的图像在场景 2 和场景 3 的信息量和标准

差两个指标优于本文算法，但在每张场景图像的处理耗

时都要远远超过 DCP 和本文算法，MF-LIME 相比 CEEF
虽然具有较快的处理速度，但其综合效果远远不如其余

算法。相比 DCP，本文算法的时间成本略高，但处理速

度快于其他算法，且在多个指标都达到了很好的效果。 

 

表 3    不同算法处理时间对比结果
Table 3    Comparison of the processing time of

different algorithms

场景
处理时间/s

DCP MRP OSFD MF-LIME CEEF 本文算法

1 0.168 1.256 1.058 0.682 1.433 0.362

2 0.085 1.085 1.015 0.381 0.719 0.162

3 0.062 0.723 0.811 0.262 0.423 0.125

4 0.058 0.660 0.831 0.247 0.345 0.111
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5    结 论

(1) 针对井下采掘作业场景图像尘雾分布不均造成

细节模糊，对比度不足和浓雾区域可见度低的问题，提

出了一种暗亮通道融合去雾及图像增强方法，实现了复

杂环境图像可见度和清晰度的提高。

(2) 通过融合全局暗通道与局部亮通道环境光得到

精确环境光，采用不同的滤波窗口恢复透射图进行融合

矫正，并联合双边滤波实现透射图精细化，结合大气散射

模型进一步降低了不均匀雾浓度，显示了更多细节信息。

(3) 针对去雾图像亮度偏暗，对比度不足的问题通

过修正色彩白平衡、自适应饱和度和对比度调整，并强

化图像细节，有效增强了去雾图像的亮度、对比度和色

彩表现。

(4) 通过数据集采集并针对不同工作状态和尘雾分

布的作业场景进行对比实验，实验结果表明：提出的算

法在不同场景下均能有效降低尘雾密度，且具有较高的

平均梯度和标准差，在保留图像信息的同时实现了细节

提升和清晰化，为采掘场景目标识别，图像分割等任务

提供了有效的解决方案。由于研究内容具有一定的针

对性，无法取得全面的指标最优且复杂的环境信息会影

响去雾图像的质量，因此针对去雾图像的质量恢复和更

有效的局部增强策略将是下一步的研究重点。 

符号注释：

A Ac

c ∈ (B,G,R) A(x,y) (x,y)

A′(x,y) A′′(x,y)

A′′′

F(x,y)

f (x,y)

G′(x,y) g(x,y)

h(x,y) Ic(x,y)

I(x,y)

J(x,y) Jd(x,y) I l(x,y)

Jc(x,y)

k L(x)

P(x,y)

s(x,y)

S (x,y)

S ′(x,y)

t(x,y) 15×15

3×3

T v(x,y)

为大气光值； 为第 c 个颜色通道对应的大气光

值， ； 为初始光照分布；Al 为全局

大气光值； 为一次光照分布调整结果； 为

二次矫正后的光照分布； 为最终大气光；B、G、R 为

颜色通道； 为雾浓度均值；Dv 为去雾图像与有雾

图像的归一化亮度差值； 为有雾图像的归一化灰

度图；G'为高斯滤波； 为亮度差异图； 为雾

浓度图； 为像素点色调的归一化值； 为有雾

图像每个 RGB 颜色通道的像素灰度值； 为有雾

图像； 为清晰无雾图像； 和 分别为无

雾图像的暗通道和有雾图像的亮通道； 为无雾图

像的每个颜色通道的像素灰度值； 为缩放因子；

为 V 通道的全局亮度均值； 为阈值分割图；Rs 为

去雾图像与有雾图像的归一化饱和度比值；ri 为不同尺

寸的滤波窗口；i 为滤波窗口顺序号，i=1，2，3； 为

像素点饱和度的归一化值； 为需要调整的饱和度

值； 为调整后的像素饱和度值；t 为融合后透射图；

t0 为阈值调整参数； 为透射率分布；t1 为 滤

波窗口得到的粗透射图；t2 为 滤波窗口得到的细透

射图； 为亮度差异阈值；Tmin 为分割最小阈值； 

α
Ω(x,y)

φ θ

1− θ λ1 λ2

为像素点亮度的归一化值； 为亮度调节因子；β1 和 β2

分别为不同的缩放因子； 为滤波器窗口；ω 为调

整参数；εi 为不同的方差； 为整体亮度修正因子； 和

分别为原图和处理后图像的加权系数； 和 为对

比度调节因子。
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