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Biomimetic technologies for drill rods: Advances in research and development trends

WANG Chuanliu, JU Pei
(CCTEG Xi’an Research Institute (Group) Co., Ltd., Xi’an 710077, China)

Abstract: [Significance] Drill rods are recognized as core tools in drilling engineering, and their performance exerts a
significant influence on drilling efficiency and safety. Over recent years, applying biomimetic technologies to drill rod
design has gradually emerged as a hot research topic. By imitating the remarkable structures, morphologies, and materi-
al properties of living organisms in nature, biomimetic technologies provide entirely new philosophies and approaches
for the innovative design of drill rods. [Advances] This study summarizes the advances in research on biomimetic tech-
nologies for drill rods in terms of the biomimetic design of structures, morphologies, and materials. Regarding the biomi-
metic design of structures, highly resilient biomimetic drill rods that prevent drilling tool accidents and have flexible
structures have been developed by imitating the spinal structural characteristics of quadruped mammals. Concerning the
biomimetic design of morphologies, highly wear-resistant biomimetic drill rods with uneven surfaces have been de-
veloped by imitating the non-smooth surface morphologies of living organisms such as dung beetles and shells. For the
biomimetic design of materials, high-strength, corrosion-resistant, and highly wear-resistant biomimetic drill rods with
gradients and fiber material characteristics have been developed by imitating Scapharca subcrenata and Crustacea for
their composite materials with biological gradients and bamboo for their biological fiber-reinforced structural character-

istics. [Prospects] Nevertheless, current research has limitations in terms of the integration of theory and practice and in-
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tegrated multifunctional design. Future biomimetic technologies for drill rods will develop toward the integration of high

strength, light weight, and wear/corrosion/fatigue resistance, as well as intelligent structure and information transmis-

sion, ultimately providing a basis and guidance for the innovation and development of drill rod technology.

Keywords: drill rod; biomimetic technique; information transmission; development trend
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Fig.2 Male connector of a biomimetic drill rod with spinal
structure characteristics

GEnPa R, BRSSO A rh S AT A S 5 5%
YR, — 7, Y2 R AETERERS A RO —E 1Y
AR, Rt K RS B B T PIRAS, B SR A SAR
VAR TSR TR, kD TR SR AR5 I — T T, SRR
(4952 377 TR B A 25 7 16, BB AT 25 ik D7 17 )
PRI, AT S i AD R IR B FORES, S8
TSRO 1 K, 22 nh 2 AR ) )22 fg 2
VRSN “WHEIR” SR, h ok 2 e Sk W 2R A JXUR:
MG TSR DX, SEBERELITR R E m R AR L5
P, D ARSI T LI RERIE I RE R 5 10 2
B, RMELEALHLRE ) R TE DL T, I D REMR IR AR I,
BFTRERATIR R R BOR BTRLRE T, ADREREAT 224
LA, MR R R FT IR S B “fsil” TR
HEEIRPY ERRPT AR S0 IR
LERREYE, 5 IERAT A B W R B i R R S )
CRWTATE” SRR AR, R A Sk SMR S
“H7 RN R N ALBEE A BUEAT 57, B BE
AT P 0 31l e 2 13 Sk R R P M 1) BRASE, AT B
Wl EHREE . W RO AR 3 R

“HE HBUER  AIAMELL
HHIE 5 (i) (8) PRAL & B

K3 B e E s ek

Fig.3 Biomimetic male connector with “bone-tendon”

characteristics
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Fig.10 Biomimetic drill rods with non-smooth surface structures
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