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Abstract: [Objective] The commingled production of coalbed methane (CBM) serves as a significant means to increase
single-well production. However, production practices reveal that the commingled production of CBM exhibits complex
and varied effects and controlling factors, facing technical challenges of identifying gas-producing contributions, predict-
ing gas-producing potential, and optimizing pay interval combinations. The superposition of desorption for gas produc-
tion among different coal seams determines whether high CBM production can be achieved using commingled produc-
tion. [Methods] This study proposed an analytical method for the desorption superposition effect in the commingled pro-
duction of CBM, involving determining desorption sequences, analyzing the superposition of desorption intervals and
the matching of desorption stages, and predicting well-controlled desorption capacities. The proposed method was ap-
plied to the Xiaotun mine field in western Guizhou Province, China. [Results and conclusions] The results indicate that
coal reservoirs in the Xiaotun mine field feature high adsorption capacities, low gas saturation, and low critical desorp-
tion pressures. The CBM pay intervals can be categorized into the upper and lower desorption systems. The upper de-
sorption system manifested a desorption sequence of the No.6 upper, No.7, No.6 middle, and No.6 lower coal seams,
while the lower desorption system displayed a desorption sequence of the No.34 and No.33 coal seams. Using changes in
the working fluid during the production process as an indicator, this study analyzed the desorption processes of coal
seams during the commingled production of CBM. The analytical results reveal that the synchronous desorption of the
No.6 upper, No.7, No.6 middle, and No.6 lower coal seams can be achieved within a working fluid of 45 m and the syn-
chronous desorption of the No.33 and No.34 coal seams can be gained within a working fluid of 92 m. Isothermal ad-
sorption curves discovered the matching of the coal seams' desorption stages. The low critical desorption pressures al-
lowed various coal seams to directly enter the sensitive desorption stage after desorption, suggesting high desorption ef-
ficiency and effective matching. This creates favorable conditions for high CBM production. However, limitations like
insufficient pressure drop space and long drainage periods impose high requirements for coal seam stimulation and CBM
production. The well-controlled desorption capacities and their time-varying curves indicate that gas desorption capacit-
ies peaked in the case of the synchronous desorption of all pay intervals within the respective desorption systems. In this
case, the upper and the lower desorption systems yielded well-controlled desorption capacities of 378.09x10" m® (daily
average: 4.20x10" m®) and 199.11x10* m® (daily average: 1.08x10* m®), respectively. Both desorption systems demon-
strated satisfactory desorption superposition effect, each forming a favorable pay interval combination for the com-
mingled production of CBM. The proposed method will provide a reference for identifying gas-producing contributions,
predicting gas-producing potential, and optimizing pay interval combinations for the commingled production of CBM.

Keywords: commingled production of coalbed methane (CBM); desorption superposition; desorption stage; working
fluid; production layer combination
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FR%E: BREALEERBREWBR N7 G L ER— LB TN H KB - 159 -

35 ¢
30 !
o s
£ 0 A
& i 4 D
@1& { 1y ] iy
= | B ] B
10 | ] '
‘| | g
0 : o : I )
2 4 6 8 10 12
W B I J3/MPa
() SRR A HA 2
30 ¢
~ 25
- 1 e
& ‘ 2% %
G 1% %
x fift fift i fift
E 150\ Ik 4 A3 W
o B b ) B
I B Bt
=
Exg 5F
0 ;
2 4 6 8 10 12
& 71/MPa
(b) AR il 2k

K6 6 =M B 7
Fig.6 Desorption stages of the No. 6 upper coal seam

Z )R B NS RERS PRI K 57, AN T THI g Il
A RS )/, BTG 22 B i HE K R T TR . eq i)
BN 5 il 7 FE SR A DCORR SOT R AR 5%
o WU B BLR D BEVEITT =, BERS SCBL™ R &,
HFEHME = A ks SRR . B PIRR O R &
B, PR S R E

4 TWIfERETN

4.1 FHIEAIRRE

WA X H 22 B i W i R (] 4) 53T i
W AR VR GR()), THER Sl T i A T g
B AR (R 3). SR TR, Y EhRmEIR A
T 227.94~273.04 m B}, LMW RGN 4 A2 EE
BN, BT AR AT i W e R T2 2R G A i R
TATYE Pl 5 22 309 1T R B A T 338.05~430.05 m [, R
R RGN 2 ANBZ R A S A, SR T A
AL FE R T A i OB TS L (5] 7a), P, A IR AR
BN ZNEIR KRB IR, A e 202 AR m A
A RIS

FEETTRR T I, 6., ML 33 BEAT I 2 MR RS
(4 3 177 2, T R et 53 50 4% R G0 I T A
Y 46.39% Fl1 61.62%. T7E &S mAHMIAIHTHE T, B2

®3 HREEE THHIETERRENRENL
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