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A phase transition-induced fracturing permeability enhancement technology using carbon diox-
ide capsules for low-permeability coal seams and its application

LI Mao, FAN Xinchuan, FU Hui
(China Pingmei Shenma Energy and Chemical Group Co., Ltd., Pingdingshan 467000, China)

Abstract: [Objective and Methods] To address engineering challenges like high gas content, high pressure, and low
drainage efficiency in the mining of low-permeability coal seams, this study developed a phase transition-induced frac-
turing and permeability enhancement technology using carbon dioxide (CO,) capsules for low-permeability coal seams.
This technology leverages the feature that CO, transitions into the supercritical state under high pressure. A capsule en-
capsulating critical CO, is placed into a conduit, which is then placed within a coal seam. Subsequently, phase transition-
induced blasting is triggered using a heating blasting start device. Consequently, liquid CO, vaporizes rapidly and ex-
pands, generating high-pressure shock waves, which induce pre-fracturing of the coal seam. The fracturing process, pro-
ducing no sparks, is prone to form fractures in coal seams, thus enhancing coal seam permeability. [Results and Conclu-
sions] The results indicate that the technology developed in this study can effectively increase the quantity of fracture
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networks in coal seams, thereby significantly enhancing the coal seam permeability. Calculations reveal that during
phase transition-induced fracturing, each capsule containing 1.4 kg of liquid CO, can release explosive power equivalent
to 243 g of trinitrotoluene (TNT). After secondary fracturing, the gas drainage influence radius gradually expands, indic-
ating high timeliness. The field application effects demonstrate that this technology increased the pure gas drainage by 2
to 4 times, the volume fraction of methane by 2 to 3 times, and the gas drainage influence radius by 1.5 to 2.0 times. The
field monitoring of the gas drainage effects of boreholes at 18, 30, 60, 90, and 120 d reveals that the gas drainage influ-
ence radius increased with time. Specifically, the influence radius increased rapidly in the initial stage, followed by a
gradual decrease in the increasing amplitude. With time, the increasing amplitude of the gas drainage influence radius
tended to level off, presenting a gradually stabilizing relationship with the drainage time. The effective drainage radius
after fracturing measured from 2.45 m to 4.95 m. All these demonstrate that the fracturing technology developed in this
study enjoys high timeliness and sustainability in gas drainage from coal seams. After fracturing, the permeability coeffi-
cient of the coal seam in the study area increased significantly from 0.009 6 m*(MPa”-d) to 0.577 m*/(MPa*-d). Addi-
tionally, since CO,, as the medium inducing fracturing, can be sourced from industrial emissions or stored CO,, the frac-
turing technology proposed in this study serves as a green permeability enhancement method, enjoying significant envir-
onmental and social benefits.

Keywords: permeability enhancement for coal seams; CO, capsule; phase transition-induced fracturing; supercritical
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